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The second-order wave force is analysed for diffraction of monochromatic water 
waves by a vertical cylinder. The force is evaluated directly from pressure integration 
over the cylinder, and the second-order potential is derived by Weber transformation 
of the corresponding forcing function on the free surface. This forcing function 
is reduced to a form which involves a simple factor inversely proportional to the 
radial coordinate plus an oscillatory function which decays more rapidly in the far 
field. This feature alleviates the slow rate of convergence involved in capturing the 
far-field effect. Benchmark computations are obtained and compared with other 
works. Asymptotic approximations are derived for long and short wavelengths. The 
analysis and results are primarily for the case of infinite fluid depth, but the finite- 
depth case is also considered to facilitate comparison with other computations and 
to illustrate the importance of finite-depth effects in the long-wavelength asymptotic 
regime. 

1. Introduction 
Many theoretical studies have been made concerning the diffraction of water waves 

by a circular cylinder with vertical axis which extends throughout a fluid of infinite 
or finite depth. This problem has great practical significance, since many offshore 
platforms and other structures are supported by vertical columns of circular form 
which are subject to wave loads. Potential theory is applicable, provided the wave 
height does not exceed a magnitude comparable to the diameter of the columns. If 
the wave slope is sufficiently small to justify linearization, the velocity potential can 
be derived by separation of variables, in the manner outlined by Havelock (1929). 
The solution is an infinite series of eigenfunctions which correspond to the terms of 
a Fourier series in the angular coordinate 8. The radial functions are appropriate 
combinations of Bessel and Hankel functions (cf. equation (2.2) below). The resulting 
first-order hydrodynamic force, proportional to the wave amplitude A,  was first 
derived for infinite depth by Havelock (1940), and extended to the more general case 
of a fluid of finite depth by MacCamy & Fuchs (1954) (cf. Mei 1983, equation 5.8). 
Various extensions of this simple problem have been considered including an elegant 
theory for arrays of circular cylinders (Linton & Evans 1990), and numerical solutions 
for more general bodies. 

Second-order wave forces proportional to A2 have particular importance in cer- 
tain applications. In regular waves the second-order force includes a mean ‘drift 
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force’ which is constant in time, and a second-harmonic component. In a spectrum 
these are generalized to include low ‘difference-frequency’ and high ‘sum-frequency’ 
components, respectively. These have special significance in regard to tension-leg 
platforms, and other types of vessels which are designed to have small response at 
the frequencies of first-order wave loads but which suffer from highly tuned resonant 
motions at frequencies below or above the first-order spectral range. These problems 
are surveyed by Molin (1994). 

In regular waves the drift force can be evaluated completely from the first-order 
velocity potential in a relatively simple manner, as first shown by Havelock (1940). 
The second-harmonic component is more difficult to analyse since it depends in part 
on the second-order component of the velocity potential, which is forced by quadratic 
interactions of the first-order solution over the domain of the free surface. 

This paper is concerned only with the second-harmonic force which acts on a 
vertical cylinder in regular waves. The theoretical formulation of this problem 
was first developed by Molin (1979), in the manner which is generally accepted 
to be complete and correct. Molin provided an appropriate modification of the 
Sommerfeld radiation condition which is applicable to the second-order potential 
and, following the analogous two-dimensional work of Faltinsen & Loken (1978), 
Molin also showed that the second-order force can be derived in an ‘indirect’ manner 
using Green’s theorem. This circumvents the need to solve for the second-order 
potential, although the numerical effort is not reduced significantly. Lighthill (1979) 
publicized this indirect approach, and derived the necessary ‘assisting potential’ for a 
vertical cylinder of infinite depth. 

The problem of a vertical cylinder in infinite depth was studied by Hunt & Baddour 
(1981) using the direct approach, and subsequently extended to finite depth by Hunt 
& Williams (1982). Their works appear to involve a different interpretation of the 
far-field condition, and Molin’s results were criticized. Nevertheless, the final formulae 
of Hunt and co-workers are in fact correct for the second-order force, although their 
numerical results are not reliable. More complete results have been presented by 
Eatock Taylor & Hung (1987), who followed the indirect approach of Lighthill (1979) 
and presented extensive computations including both cases where the fluid depth is 
infinite or finite. Comparisons were made with the computations of Hunt and co- 
workers and significant differences were noted in some cases. Further computations 
were presented for truncated cylinders of finite draught by Kim & Yue (1989), and 
for the special case of a bottom-mounted cylinder in a fluid of finite depth results 
were given based on both the direct and indirect approach. Second-order panel 
methods have been developed subsequently which are applicable for more general 
bodies. 

The present work is motivated in part by the need for accurate numerical results 
suitable for use as benchmarks in testing panel programs, and by the inconsistencies 
in some of the earlier papers listed above. The direct approach is used, a Weber 
transform is employed to solve for the second-order potential in the same manner as 
first applied to this problem by Hunt & Baddour (1981), and the resulting pressure is 
integrated over the body surface. It is interesting to note that the indirect approach 
of Eatock Taylor & Hung (1987) and the present direct solution lead to identical 
analytical expressions for the second-order force. One feature of the direct solution 
based on Weber transformation is that the far-field asymptotic form of the second- 
order potential is easily derived in terms of the ‘locked’ and ‘free’ components first 
elucidated by Molin (1979). 

To simplify the analysis we restrict our attention to the first Fourier harmonic of 
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the second-order potential, with respect to the angular coordinate 6, since this is 
the only component which affects the integrated force. A more complete solution 
for the second-order potential is derived by Chau & Eatock Taylor (1992), using a 
special Green function which satisfies both the first-order free-surface condition and 
the homogeneous Neumann condition on the cylinder. That procedure and the use 
of Weber transforms are fundamentally equivalent, but the latter approach appears 
to be somewhat simpler and more direct. 

An important detail from the computational standpoint is that we reduce the 
expression for the forcing function of the second-order potential on the free surface 
to a form which is simpler to apply. This feature, and the use of integration in the 
complex plane, alleviate the most difficult computational aspect of the second-order 
analysis, involving slowly convergent integration over the free surface. The latter 
problem is elaborated by Kim & Yue (1989) and by Chau & Eatock Taylor (1992). 
The present approach permits us to compute the second-harmonic force with high 
numerical accuracy, for a broad range of wavenumbers. 

To complete the description of the second-order force we also derive asymptotic 
approximations in the complementary regimes where the wavelength is either long 
(Ka*l) or short (Ka91) compared to the cylinder radius. 

The long-wavelength regime is of practical importance in regard to many offshore 
platforms where the surface-piercing elements are cylindrical columns with diameters 
of 10-20 m. In severe sea states where the characteristic wavelengths are 2 0 s  
400 m it follows that K a  < 71/10. This consideration has motivated long-wavelength 
approximations for the first- and second-order forces which are derived by Lighthill 
(1979). At first order a local analysis is justified and the resulting limit of the 
first-order force is consistent with the inertial term of Morison’s formula, i.e. a 
force acting on the cylinder proportional to the product of the local horizontal 
acceleration of the incident-wave field and the virtual mass. A more complete 
solution is required to account for the free-surface forcing effect on the second- 
order potential, which acts over relatively large horizontal scales, as emphasized 
by Newman ( 1990). The long-wavelength approximation of the second-order force 
derived by Lighthill (1979) is incomplete in this respect, and a more consistent 
approximation is derived here, but little practical improvement results from this 
refinement. 

The long-wavelength regime is important not only for first- and second-order 
forces but at higher order in connection with the problem of ‘ringing’, which has been 
observed on some types of offshore platforms in extreme wave conditions. A conflict 
in the study of the third-order third-harmonic force has emerged from two somewhat 
different theories developed by Faltinsen, Newman & Vinje (1995) and by Malenica 
& Molin (1995). In Faltinsen et al. the fundamental assumptions are that K a ~ l  and 
A / a  = 0(1), whereas in Malenica & Molin K a  = 0(1) and A G a .  Another difference 
is that Faltinsen et at. assume the fluid depth to be infinite, whereas Malenica & 
Molin consider the depth to be finite. In seeking an explanation for the limited 
agreement between these complementary theories Malenica & Molin note that the 
long-wavelength approximation has a rather restricted domain of applicability also 
in the second-order theory. Thus a more complete study of the second-order problem 
is warranted, including a consideration of the different long-wavelength results which 
correspond to the cases of finite and infinite depth. 

The short-wavelength regime is interesting insofar as the second-order force is 
oscillatory, in phase with the reflected waves along the ray opposite to the incident- 
wave direction, and the modulus of the force increases in proportion to the frequency 
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for fixed incident-wave amplitude. This (horizontal) force is due primarily to the 
pressure field at large depths relative to the wavelength, as in the analogous case of 
the vertical force on a deep truncated cylinder (Newman 1990). 

Our analysis is focused on the second-harmonic force F2 which acts on the cylinder. 
This component of the total second-order force can be expressed in the form 

F2 = Re { (Fq + Fp)  e2iwt} , (1.1) 
where o is the frequency of the first-order motion, Fq is the component due to 
quadratic contributions from the first-order potential, and Fp is due to the second- 
order potential itself. These are considered separately in the following sections. 

The case of an infinite fluid depth is considered first, to simplify the analysis. In 
$2 the first-order potential is reviewed, and applied to the force Fq. The free-surface 
forcing function for the second-order potential is derived in $3, the solution is obtained 
in $4, and the resulting force Fp is evaluated in $5. Long- and short-wavelength 
approximations for Fq and Fp are derived in $6 and $7. The corresponding analysis 
for a fluid of finite depth is summarized in $$S-lO. The results are discussed in the 
concluding $1 1. 

It is convenient to non-dimensionalize the force F2, and each of its components, 
dividing by the product pgA2a where p is the fluid density, g the acceleration due 
to gravity, A the incident-wave amplitude, and a the cylinder radius. Denoting the 
non-dimensional force with an overbar, 

Fz = pgA2aF2 = pgA2aRe { ( F q  + F P )  e2iot}. (1.2) 

F p  = + J?B (1.3) 

In $$%lo, where the fluid depth is finite, the additional decomposition 

is made, where FI is the contribution associated with the second-order component of 
the incident-wave potential, and with the scattering of this potential by the cylinder, 
and F B  is the contribution from the remaining second-order potential. 

2. Force due to the first-order potential 
We consider the scattering of plane progressive waves by a vertical circular cylinder 

of radius a, which extends throughout the fluid of infinite depth. The first-order 
diffraction potential can be expressed in the form 

= Re {& e'"') (2.1) 

41 = (igA/o) eKz cos m0 & ( K r ) .  (2.2) 

where o is the radian frequency, t denotes time, and 
00 

m=O 

Here A cos ot is the incident-wave elevation at the cylinder axis, g is the gravitational 
acceleration, and K = 02/g is the wavenumber. The cylindrical coordinates (r ,  0 , z )  
are defined such that z = 0 is the plane of the undisturbed free surface, z < 0 is the 
fluid domain, and the direction of wave propagation is 0 = 0. The symbol E,,, denotes 
the Jacobi factor: €0 = 1 and E ,  = 2 for m 2 1. The radial functions &(Kr)  are 
defined by 

&(Kr)  = Jm(Kr) - cmHm(Kr) 3 (2.3) 
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where Hm = J ,  - iY, is the Hankel function of the second kind, and for convenience 
the usual superscript (2) is omitted. The coefficients c, are evaluated so that (2.2) 
satisfies the boundary condition of zero normal velocity on the cylinder, hence 

cm(Ka)  = J L ( K a ) / H A ( K a ) .  (2.4) 

The total integrated force acting on the cylinder in the direction d = 0, due to the 
fluid pressure p ,  is 

r 
~ = p a ~ c o s d d I 9 ~ ~ ( m : + ~ V ~ . V Q + ~ z )  r=a dz.  (2.5) 

Here the Bernoulli equation has been used to evaluate the pressure, and z = ( is the 
elevation of the free surface. The linear force is derived in a straightforward manner 
by substituting (2.1) for the term @[, and integrating below the mean free surface 
2 =o.  

In the analysis to follow we consider only the second-harmonic components of 
second-order quantities, for which the general relation 

Re{Uelwt} Re{Ve'"'} = ~Re{UVe2'" '+UV*} 2 (2-6) 

may be used. Here an asterisk denotes the complex conjugate, and ( U ,  V )  are arbitrary 
complex coefficients. The last term in (2.6) is omitted hereafter, since it contributes 
only to the time-average component and not to the second-harmonic. 

The first-order potential (2.1) contributes two different components to the second- 
order force, including the distributed force due to the second-order term in the 
pressure, 

FJ') = +pa [' cos 13 dd ( V ~ I  * V # I )  dz , 12.7) 

and the point force, given by the second-harmonic component of the expression 

i 
pa 12' cos 0 dd 1 (Qr + gz),=, dz = -I ,pga 1,' cos 19 i2dI9. (2.8) 

Here the relation ( = -(1/g)@lr has been used for the first-order free-surface elevation. 
For the distributed force (2.7) the vertical integration is elementary, and the az- 

imuthal integral can be evaluated using orthogonality of the Fourier series in the 
form 1 (V41- V 4 , )  cos d d0 = 4 ~ c i ( g A / w ) ~ K ' e ~ ~ ~ S ( K r ) ,  (2.9) 

where 

(2.10) 

On the cylinder r = a, 
functions, 

= 0 and, from the Wronskian relation for the Bessel 

(2.11) 
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FIGURE 1. Real (solid) and imaginary (dashed) parts of the force P ,  due to the first-order 

potential, computed from (2.14). 

After substituting these results in (2.7), integrating vertically, and non- 
dimensionalizing in accordance with (1.2), the distributed force follows in the form 

A similar analysis for the point force (2.8) gives 

Thus the total second-order force due to the first-order potential is 

(2.13) 

(2.14) 

Figure 1 shows the results of computations based on direct summation of the 
series in (2.14), with truncation when the index m exceeds the value 1.5Ka + 8. 
The Hankel functions are evaluated from double-precision subroutines based on 
Chebyshev polynomial approximations. These algorithms are intended to provide at 
least 8 decimal-place absolute accuracy. The oscillatory behaviour which is evident 
in figure 1 will be discussed in the context of the short-wavelength asymptotic 
approximations in $7. 

3. The forcing function for the second-order potential 
Next we consider the second-order potential 4 2  in the perturbation expansion 

@ = Re {$I eiwt + 4 2  e2iot + ...} . (3.1) 

Like the first-order potential (2.2), 42 satisfies the homogeneous boundary condition 
4 2 r  = 0 on the cylinder, but on the plane z = 0 the second-order free-surface condition 
is applicable. For the present case where the fluid is infinitely deep, and the first-order 
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solution (2.2) has the same exponential dependence on z as the incident wave, the 
free-surface condition takes the relatively simple form 

i o  
g 

4 K h  - hZ = - V h  * V 6 .  

The potential $ 2  can be expanded in a Fourier series, in the form 

m=O 

Only the term proportional to cos 0 contributes to the second-order force (2.5), and 
from (3.2) the relevant free-surface boundary condition is 

4K4Y' - &) = - cos 0 V 4 1  -V& d0 = - 4 w K A 2 S ( K r ) ,  (3.4) 
=g iw .i?" 0 

where S ( K r )  is defined by (2.10). This series can be simplified using the relations 

(3.5) 

where $7, denotes either the Bessel or Hankel function of argument z.  Thus 

The sum of the first two terms in square brackets is zero. (These terms are associated 
only with the incident-wave potential, for which the right-hand side of (3.2) vanishes.) 

After re-grouping the remaining terms in (3.6) and using the Wronskian relation, 
this equation may be written in the simpler form 

1 
K r  S ( K r )  = - [do(Ka) + T ( K r ) ]  , (3.7) 

where 

and 
a, 

T ( K r )  = C d m ( K a )  H m R m .  (3.10) 

The reduction from (2.10) to (3.7) is particularly useful in regard to the asymptotic 
form for K r + l .  Both (3.6) and the more general form of the 'quadratic forcing 
function' on the right-hand side of (3.2) involve sums of products of Bessel and 

m=l 
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Hankel functions, with each product inversely proportional to l/Kr. Since T ( K r )  is 
of the same form, the simple first term in (3.7) is the leading-order contribution for 
K r +  1, and the remaining contribution which involves products of Bessel and Hankel 
functions is of order l/(Kr)2. 

If K ~ B  1 and the asymptotic approximation is substituted for the Hankel function, 
the scattering potential on the free surface in the reflected direction 0 = rc is equal to 

m 

q5s(r, .n, 0) = -igA emim cmHm(Kr) 
m=O 

(3.11) 

In the short-wavelength regime K a + l  we shall show that the second-order force is 
proportional to do, and thus to the scattering amplitude of the reflected wave. 

4. Solution for the second-order potential 
A solution of the boundary-value problem for # is sought using Weber transforms 

analogous to those in Emmerhoff & Sclavounos (1992, equation 45). For this purpose 
we first express S ( K r )  in the form 

kdk 
J;(ka)2 + Y{(ka)2 ' 

where 

g(k) = S(Kr)Wl(ka,kr)rdr 6" 
and 

Wl(ka, kr) = Y,'(ka)Jl(kr) - J;(ka)YI(kr). 
The solution of (3.4) is then constructed in the form 

kdk 
J;(ka)2 + Y,'(ka)2 ' 

q5f)(r, z )  = .Im @)(k) ekz Wl(ka, kr) (4.4) 

where 
40K A2j (k )  

The contour of integration in (4.4) is defined to 
This solution satisfies the homogeneous boundary 

@'(k) = 
k-4K (4.5) 

pass above the pole k = 4K. 
condition on the cylinder, and 

the product of (4.4) and cos0 satisfies the governing Laplace equation in the fluid 
domain. The conditions at infinity will be considered below. 

The behaviour of (4.2) for small k is first determined, by considering the contribution 
to this integral for large values of r .  From the leading term in (3.7) it follows that 
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Substituting this result in (4.5), 

Thus the contribution to (4.4) from the vicinity of the lower limit k = 0 is 

k-=dk 
J;(ka)2 + Y;(ka)2 ‘ 

- 2 1 ekz Wl(ka, kr) 
nKa2 

425 

(4.7) 

(4.8) 

When r = O ( a )  the small-k expansion of the Bessel functions in (4.8) is straight- 
forward, and it follows from Watson’s lemma that the asymptotic form of (4.8) for 
large Iz/ is of order 1/z2. Thus the solution (4.4) vanishes at large depths in an ap- 
propriate manner. Note however that while this statement applies to the first Fourier 
component it does not apply to the complete potential $2, which for large depths is 
given by the approximation 

4 2 - - i d 0 ( $ )  ( R(R + x) ) ’ (4.9) 

as shown by Newman (1990). Here R = (x2 + y2 + z ~ ) ’ ’ ~ .  
In the complementary case where r+u and IzI = O ( a ) ,  the asymptotic approxi- 

mation of (4.4) includes two contributions associated respectively with the vicinity 
of the lower limit k = 0 and with the residue from the pole at k = 4K. The first 
contribution can be evaluated from Watson’s Lemma, neglecting the first term in the 
denominator of (4.5) and the exponential factor ekz in the integrand; after recalling 
(4.1) this contribution is simply proportional to the forcing function on the free 
surface. The contribution from the residue at the pole is an outgoing radiated wave, 
which is analysed in the same manner as the far-field asymptotic approximation of 
the first-order solution (cf. Emmerhoff & Sclavounos 1992, equations 50-52). The 
complete asymptotic approximation of (4.4) is 

The two terms in (4.10) correspond respectively to the ‘locked’ and ‘free’ waves 
described by Molin (1979) and also by Mei (1983, 912.10). This confirms that the 
appropriate conditions at infinity are satisfied by the solution (4.4). This far-field 
asymptotic analysis can be generalized for the other Fourier harmonics of the second- 
order potential (3.3), with similar results. 

5. The force due to the second-order potential 

where the differential wave load per unit depth is 
The contribution from the solution 4y) to the force (2.5) is a distributed force 

Substituting (4.4) gives the result 

dk 
J{(ka)2 + Y[(ka)2 ’ 

co 
FL = 4iwp 1 @)(k) ekz 
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where the Wronskian has been used to simplify the integrand. Integrating vertically 
over the infinite depth of the cylinder gives the total force 

k-ldk 

O0 g(k) k-ldk 

00 1 ‘y)(k) Ji(ka)2 + Y[(ka)2 
Fp = 4iop 

= lbipgK’A’1 ~ 

k - 4K Ji(ka)2 + Y[(ka)2 ‘ (5.3) 

Except for changes in notation and the simplified form (3.7) of the forcing function 
S ,  (5.3) is equivalent to the corresponding formula of Hunt & Baddour (1981). 

Substituting (4.2), interchanging the orders of integration, and adopting the non- 
dimensional notation (1.2), 

v3 

F P  = 4 X / a  .I G(Kr)S(Kr)rdr , 

where 
Wl(ka, kr) k-1 dk 

G(Kr) = 4K 1 k - 4K J[(ka)2 + Y[(ka)’ ’ 

(5.4) 

(5.5) 

The integral in (5.5) can be transformed by contour integration in the complex 
k-plane. For this purpose we use the identity 

(5.6) 

where Hi’) = J1 + iY1 is the first-kind Hankel function. After deforming the contour 
of integration in (5.5) to the positive or negative imaginary axes, respectively, for the 
terms which involve HI” and HI, it follows that 

Kl(4Kru)du Hl(4Kr) 
uK;(4Kau)(u2 + 1) - XHi(4Ka) 

(5.7) 

Here g(Kr) denotes the integral in (5.7), and the new integration variable is defined 
by k = +i4Ku; the term involving the Hankel function of the second kind is due to 
the residue from the pole. 

The function g(Kr) is negative, with monotonic decreasing absolute value as K r  
increases. For small values of Ka and Kr the Bessel function K1 and its derivative 
can be approximated by their leading terms, giving the approximation 

(Ka)’ lrn dv - - - 274Ka)’ 
g(Kr) - -- Kr v2 + 1 Kr ’ 

For large values of Kr the principal contribution to (5.7) is from the vicinity of the 
lower limit of integration. After approximating the denominator for small values of 
u,  

rca’ 
K1(4Kru)udu = -~ 

2r2 g(Kr) - - ( ~ K u ) ~  (5.9) 

In the form (5.7) the function G is essentially the same as the assisting potential 
derived by Lighthill (1979, equation 75) and applied to the second-order force by 
Eatock Taylor & Hung (1987, equation A14). 
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After substituting (3.7) and (5.7) in (5.4), 

F P  = 9 ./I G(Kr)dr + 4i/a la g(Kr)T(Kr)dr 
U 

-4ni/a Irn Hi(4Kr) T(Kr)dr . (5.10) 
(1 HI(4K4 

The contributions from each of the three integrals in (5.10) will be considered 
separately, with the definitions F P  = F r l  + Fr) + F(3) .  P 

The first integral in (5.10), which is associated with the term do/Kr in (3.7), can be 
integrated directly to give the result 

Ko(4Kau)du . do Ho(4KU) 
- - I -  

u2Ki(4Kau)(u2 + 1) K a  Hi(4Ka) ' 

The contribution from the second integral is 

(5.11) 

(5.12) 

where the non-dimensional variable of integration is u = K r .  With the same change 
of variable, the contribution from the third integral is 

(5.13) 

This decomposition of F p  into three separate components is effective from the 
computational standpoint. The component (5.1 1) is relatively simple to evaluate by 
numerical integration since the integrand is monotonic and tends to zero for large u 
in proportion to u - ~ .  The component (5.12) is the most difficult since the infinite series 
(3.10) must be summed to evaluate T(u) ,  and (5.7) must be integrated numerically to 
evaluate g(u) ;  for large u the integrand is oscillatory, with its modulus proportional 
to u-j. 

The component (5.13) can be evaluated more easily after deforming the contour of 
integration so that the integrand converges exponentially at infinity. The integrand is 
an analytic function of u in the complex plane, excluding a branch cut on the negative 
real axis. An effective contour for numerical integration is along the positive real axis 
from K a  to uo, and then parallel to the negative imaginary axis from uo to uo - im. 
The latter component of the integral converges exponentially. The segment along the 
real axis is required to avoid cancellation errors associated with the fact that in the 
series representation (3.10) for T(u) ,  H,(u) is large, proportional to UP, when m+u. 
The series in (3.10) can be truncated after the term m = M = [2Ka + 51. Having 
established this upper limit for the order of the Bessel and Hankel functions, the 
value of uo is set equal to 0.75M. One of the advantages of the reduction from (2.10) 
to (3.7) is that the truncation of (3.10) can be fixed, whereas in (2.10) the maximum 
order M must be increased as the variable of integration u = K r  is increased. 

The force F p  is shown in figure 2, based on computations from a program which is 
intended to give final results having an absolute accuracy of at least 8 decimal places. 
The Bessel and Hankel functions are evaluated using Chebyshev approximations, 
as described at the end of §2. The series in (3.8) and (3.10) are summed directly, 
retaining sufficient terms to give the above accuracy. The integrals in (5.7), (5.11), 
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15 1 

FIGURE 2. Real (solid) and imaginary (dashed) parts of the force P ,  due to the second-order 
potential, computed from (5.11)-(5.13). 

(5.12), and (5.13) are evaluated using adaptive Romberg integration in finite steps, 
and proceeding until the contribution from the last step is less than the prescribed 
tolerance for numerical error. The oscillatory behaviour which is evident in figure 2 
will be discussed in $7. 

6. Long-wavelength approximations 
For K a Q l  the force Fq due to the first-order potential can be approximated in 

a straightforward manner, using the ascending series for the Bessel functions. The 
leading-order contributions, of order (Ka) ,  are from the terms m = 0 , l  in (2.14). The 
next terms in the asymptotic expansion, of order ( K u ) ~  and (K~)~log(Ka) ,  are from 
the terms m = 0,1,2. After some algebra the non-dimensional force component due 
to the first-order potential is approximated in the form 

57ci 
4 

F q  = -Ka [l + (log($a) + y - + ini)] + O ( ( K ~ ) ~ ( l o g K a ) ~ ) .  (6.1) 

Figure 3 shows a comparison of (6.1) with the exact results in the range 0 < K a  < 0.5. 
The long-wavelength approximation (6.1) is useful throughout this range. The leading- 
order term in (6.1), denoted by the short dashed line in figure 3, was derived by 
Lighthill (1979). 

A more extensive analysis is required for the force Fp. The Bessel functions in (5.11) 
can be expanded in ascending series, and integrated to give the approximation 

P - -l27ci(K~)~ [log 2Ka + y + nil . (6.2) 
In the analysis of (5.12) we consider first the function g(u) defined by (5.7). After 

expanding Ki  and retaining the leading term for small values of the argument, 

rZg(u) ‘v -(4Ka)2 
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where H, is the Struve function and the integral has been evaluated using equation 
(11.4.47) of Abramowitz & Stegun (1964). For u ~ l  the Bessel function Y-I = Y1 is 
dominant, and 

in accordance with (5.8). Conversely, for u+1, equation (12.1.34) of Abramowitz & 
Stegun (1964) is applicable and g = 0 ( u p 2 )  in accordance with (5.9). 

g(u) - -2n(Ka)‘/u, (6.4) 

The product R,H, in (3.10) is considered next, in the form 

&(u)Hm(u) = Jmfu)Hm(u) - c,H,(uI2. (6.5) 
For K a ~ l  it follows from the expansion of (2.4) that 

ni ni ni 
co - -- 4 (W’, c1 - $Ka)’, (‘2 - -(Ka)4, 32 

and more generally, for m > 0, c, = O((Ka)2m).  Thus for u 3 K a  each term in (6.5) 
is bounded, of order one as K a  + 0. From (3.9) it also follows that 

and for m > 1, d, = O((Ka)2m-2).  Only the terms m = 1 and m = 2 contribute to 
leading order in (5.12), with the result 

The contribution in (6.8) from the product JmH,  extends over the complete range 
K a  < u < 03, with the integrand proportional to l / u  for u --+ K a .  Note that 

i 
nm 

J,(u)H,(u) - -iJ,(u)Y,(u) - - + 0 ( u 2  log u) 

for u-41, and J , H ,  = O ( l / u )  for u + l .  After using the last form of (6.3) and 
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integrating by parts, this contribution to (6.8) is replaced by 

- 4 n i ( K ~ ) ~  [log(2Ka) + y ]  . (6.10) 

Here (6.9) has been used to evaluate the contribution from the lower limit of integra- 
tion. 

Next consider the contribution in (6.8) from the products c,Hi. Since the coef- 
ficients c1 and c2 are proportional to ( K u ) ~ " ,  these products only contribute to the 
integral in the vicinity of the lower limit of integration, where u a l .  Using (6.4), (6.6), 
and approximating the Hankel functions for u ~ l ,  

(6.11) 

Adding (6.10) and (6.11) gives the leading-order approximation of (6.8) in the form 

F(2)  P - - 4 ~ i ( K a ) ~  [log(2Ka) + y - i] + ( K L ~ ) ~ C ( ~ ) ,  (6.12) 

where C(2)  is a complex constant, equal to the factor of ( K u ) ~  in the third line of 
(6.10). This constant can be expressed in the more convenient form 

C(2)  = 2n2 1 [L0(4u) - Io(4u)l % [Il(u)Kl(u) + 212(~)K2(~)1 du 
d 00 

which is derived by contour integration, with the new variable u = iu, after noting 
that the integrand is analytic for Re(u) > 0 and of order u-3 at infinity. Here Lo 
denotes the modified Struve function. The integrals in (6.13) have been evaluated by 
numerical integration, with the result 

C(2)  = 2.534331 - 0.6125031. (6.14) 

Proceeding in a similar manner for Ff), defined by (5.13), (6.3) is replaced by 

- n  - -8n2i(Ka)2H1(4u) - 47~(Ka)~/u,  
Hi(4Ka) 

where the last approximation is valid for u a l .  Thus 

The contribution to (6.16) from the terms JmHm can be approximated 

(6.15) 

(6.16) 

n the same 
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manner as (6.10) to give the result 

-2171' (Ka)' HI (4K a )  [ J I  (Ka)H1 (Ka) + 252( Ka)H2( K a ) ]  

l o g ( 2 ~ a )  + 'J + 
where 

(6.17) 

(6.18) 

The last form of this integral is derived as in (6.13), and it follows from numerical 
integration that 

(6.19) C(') = --Im (C(2)) = 0.048741. 

Since the last approximation in (6.15) differs from (6.4) by the simple factor -2, the 
same factor can be multiplied by (6.11) to obtain the result 

1 
471 

2 * <  

H1(4u) [-c,H,(u)'] du - - 3 7 4 K ~ ) ~  (6.20) 

Adding the contributions (6.17) and (6.20) gives 

P - 87ci(~a)' [1og(2~a)  + y - + i n i  + c'~)] . (6.21) 

The total force component F P  due to the second-order potential can be approxi- 

F,, - -%~i(Ka)~(log2Ka + y )  + (r<ai3 [81.39117 + 0.6125031] . (6.22) 

Neglecting a logarithmic factor, the error in this approximation is of order (Ka) ' .  
Figure 4 shows a comparison of (6.22) with the exact results in the range 0 < K a  < 0.5. 
The long-wavelength approximation (6.22) is useful only for values of Ku less than 

Figure 5 compares the long-wavelength approximation with the exact results for the 
total force Fp + Fq, with a similar conclusion regarding the validity of the approximate 
results as in the discussion pertaining to Fp in the preceding paragraph. 

The long-wavelength approximations (6.1) and (6.22) have been derived directly 
from the exact expressions for the second-order forces. These approximations are 
valid only for the specific case of an infinitely deep cylinder. An alternative approach 
is to approximate the velocity potential near the body, as in Lighthill (1979). The 
latter approach is simpler, and more easily extended to other bodies. However it 
does not yield the same results as in (6.1) and (6.22). With respect to the force F, 
due to the first-order potential, Lighthill (1979) derives only the leading-order term 
in (6.1) proportional to Ka. With respect to the force FP due to the second-order 
potential, Lighthill (1979) derives an approximation similar in form to (6.22) but with 
the imaginary factor -+xi in place of the complex constant in square brackets in 
(6.22). (The exact value of this factor is not explicit in Lighthill (1979), but it is 

mated by the sum of (6.2), (6.12) and (6.21), with the final result 

0.1-0.15. 
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FIGURE 4. Comparison of the long-wavelength approximation (6.22) (long-dashed curves) with the 
‘exact’ force P ,  computed from (5.11)-(5.13) (solid curves). The real parts are the two upper curves. 
The approximation derived by Lighthill (1979) for the imaginary component is indicated by the 
short-dashed curve. 
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FIGURE 5. Comparison of the long-wavelength approximation for the total second-order force 
Fp + Fq (long-dashed curves) with the corresponding ‘exact’ computed results (solid curves). The 
real parts are the two curves tangent to the horizontal axis at the origin. The approximation derived 
by Lighthill (1979) for the imaginary component is indicated by the short-dashed curve. 

implied there and confirmed by Eatock Taylor & Hung (1987) who compare it with 
their numerical results.) Lighthill’s analysis is restricted to the solution near the body, 
and the argument which is used to estimate the integral over the free surface far from 
the body appears to be incomplete. 

The approximations of Lighthill (1979) are included in figures 3-5 for comparison. 
For the component F 4  shown in figure 3, the more complete approximation (6.1) is 
useful over a substantially larger range. For the imaginary part of the component F P  
the distinction between Lighthill’s factor and the corresponding imaginary constant 
in (6.22) is relatively unimportant, and in fact Lighthill’s approximation is somewhat 
closer to the exact computed results. However the real component in (6.22) is more 
important in the range Ka < 0.15, and for larger values of K a  both approximations 
for Fp are essentially useless. 
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7. Short-wavelength approximations 
In the short-wavelength regime ( K a s  1) the first-order diffraction field near the 

cylinder can be approximated by the method of geometric optics. In the 'illuminated' 
region on the upwave side of the cylinder the potential consists of the incident 
wave plus a reflected wave with the same amplitude and phase on the cylinder: 

41 hi 2 ( i g ~ / o )  e K z p ~ u c o s ~  for (n /2  < 0 < 3n/2). (7.1) 

In the 'shadow region' on the downwave side the potential vanishes. Using these 
results to evaluate the tangential velocity components on the cylinder, it follows from 
(2.9) and the boundary condition 41,. = 0 that 

where the method of stationary phase is used to approximate the last integral. 
Considering first the force Fq due to the first-order potential, the distributed 

force (2.7) can be evaluated directly using (7.2), and the point force (2.8) can be 
approximated in a similar manner using (7.1) to evaluate the free-surface elevation 5. 
It follows that 

For the force Fp, the dominant contribution for K a + l  is from the component (5.11). 
The last integral in (5.11) can be approximated by neglecting the factor 1 + u2 in the 
denominator and changing the variable of integration. It follows that this integral is 
proportional to Ka, and dominant by comparison to the residue term. Thus 

From the asymptotic expansions for J ,  and H ,  it follows that c, = 0(1), for Ka+m, 
and c, --. 0 for m+Ka. The coefficients d, have a similar behaviour, with the 
exception of the sum do which can be approximated from (3.7) and (7.2) in the 
following manner. First note that the series (3.10) is of order 1/Ka, and thus the first 
term on the right-hand side of (3.7) is dominant. After setting r = a it follows that 

where (7.2) has been used in the last approximation. The same result may be 
derived from the more complicated asymptotic analysis described by Jones ( 1964, 
$8.7, equation 36). 

The integral in (7.4) is equal to a real constant with the value -1.85463, based on 
numerical integration. Using (7.5) it follows that 

F P  - 4.1851 (Ka) ' /*  e21Ka'n'/4. (7.6) 

Since the first-order diffraction field is concentrated near the free surface. the 
force Fq is relatively small. The second-order potential is attenuated more slowly 
with depth, and thus the corresponding force (7.6) is dominant. For depths z 
which are large compared to both the wavelength and cylinder radius (4.9) can be 
integrated over the cylinder to give the same result as (7.6), but with the smaller 
constant factor 2 d 2  = 3.545 in place of 4.185. This difference can be attributed 
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2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

0.7474 0.3535 
0.9931 0.3437 
0.8901 0.2636 
0.9550 0.0990 
1.0334 0.1445 
0.9559 0.1428 
0.9807 0.0590 
1.0229 0.0933 
0.9728 0.0920 
0.9927 0.0436 

0.9058 0.4613 
1.0317 0.2755 
1.0041 0.1918 
1.0089 0.1178 
1.0260 0.1017 
1.0109 0.0925 
1.0087 0.0673 
1.0167 0.0624 
1.0087 0.0596 
1.0078 0.0471 

TABLE 1. Ratios of the exact values of the second-order force components divided by their 
asymptotic approximations Fqa and Fp,, defined respectively by (7.3) and (7.6). 

to the use of the far-field approximation for the free-surface forcing function in 
(4.9), with the consequence that this approximation is not accurate close to the free 
surface. 

Table 1 shows the ratios between the 'exact' numerical evaluations of Fq and 
Fp and the corresponding short-wavelength approximations (7.3) and (7.6). These 
approximations have relative accuracies within a few percent for the modulus when 
Ka > 3. Approximations which have a similar accuracy for both the modulus and 
phase result if (7.3) and (7.6) are multiplied by the factor (1 + i/Ka); this factor has 
been determined empirically from the results in table 1, and not by a higher-order 
asymptotic analysis. 

8. Finite depth 
For a fluid of finite depth h, with the cylinder extending from the free surface to 

the bottom at z = -h, the first-order diffraction potential (2.2) is replaced by the 
corresponding solution 

a, igA cosh(K(z + h))  
cos me Rm(Kr), 

m=O 
$1 = 0 cosh(K h) 

where the frequency w and wavenumber K are related by the dispersion relation 

w2 
- = v = K tanhKh. 
g 

The appropriate modifications of the force F4 due to the first-order potential are 
relatively simple, with the result that (2.14) is replaced by 

m(m + 1) - 2Kh (1 - m(m 4- I ) ) ]  . 
(8.3) [,+ K2a2 sinh2Kh K2a2 

The contribution from the last pair of terms in square brackets, which represents 
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FIGURE 6. Imaginary part of the force F4 computed from (8.3). (The corresponding results for the 
real part of F4 are graphically indistinguishable from the infinite-depth limit shown in figure 3.) 
The different curves correspond to increasing depths h / a  = 8,16,32, m as shown in the legend. 

the difference between (8.3) and (2.14), is exponentially small for K b 1 .  Figure 6 
shows computations based on (8.3) for increasing values of the depth, to indicate 
the correlation with the infinite-depth limit. For small values of K a  the imaginary 
component is affected by the depth, but the real component is small and insensitive 
to the depth. For K a <  1 and K h< 1, the slope of the imaginary component is reduced 
by the factor 2/5. 

The second-order potential is forced by the inhomogeneous free-surface condition 
analogous to (3.2), which now includes additional terms on the right-hand side : 

(8.4) 
i o  
g 

After expanding the potential 42 in a Fourier series, as in (3.3), the relevant component 
satisfies a free-surface condition analogous to (3.4), in the form 

4V42 - $22 = - [ V ~ I  'v41 + $41 ( V ~ I Z  - ~ I Z Z ) ]  z=o . 

1 x 

S ( K r )  - 5 sech' K h):(-)"R,Rm+, . (8.5) 
m=O 

4V4':' - 
o 

The sum in (8.5) accounts for the contribution from the extra terms in (8.4), and 
for the modification to the vertical gradient of the potential due to the effect of the 
finite depth. After substituting (2.3), and using the identity (Abramowitz & Stegun, 
equation 10.1.78) 

it follows that 
m 5 

c ( - ) m R m R m + ~  = 451(2Kr) - COHOJI + x ( - ) m c m H m  (&-I  - J m + l )  . (8.7) 

To conform with the notation of the infinite-depth case it is convenient to redefine 

m=O m= 1 
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the forcing function on the right-hand side of (8.5) as follows: 

Here, corresponding to (3.10), 

m=l  
r 00 1 

The term in (8.7) and (8.8) involving Jl(2Kr) is associated with the second-order 
component of the incident-wave potential. The forcing effect from this term is 
attenuated too slowly in the far field to be represented by a Weber transform, and it 
must be treated separately as described in the next section. The additional potential 
and force associated with the remaining terms in (8.8) are analysed in $10. 

9. The force due to the second-order incident-wave potential 
The contribution to the second-order solution due to the forcing from the first 

term on the right-hand side of (8.7) is associated with the second-order incident-wave 
potential, and satisfies the free-surface condition 

A particular solution which corresponds to the incident-wave potential alone is 
obtained by inspection in the form 

J1(2Kr). 
3gK2A2 cosh(2K(z + h)) 

WV sinh2 2K h 
4:) = ~ 

This solution satisfies the boundary conditions except on the cylinder, and a homoge- 
neous solution of (9.1) must be added to represent the corresponding scattering effect. 
The appropriate scattering solution is readily obtained from the first-order theory of 
Havelock (1929), in the form 

Here ko is the positive real root of the equation 

4v - ko tanhkoh = 0, 

and ilc, is the set of imaginary roots of (9.4), ordered such that ( n  - i)n < ~ , h  < nz. 
The functions of the vertical coordinate z in (9.3) are 

(9.4) 

and K1 is the modified Bessel function of the second kind. The coefficients bo,b, in 
(9.3) are evaluated from the boundary condition 

4;; + &2r = o ( r  = a) ,  (9.6) 
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and it follows from the orthogonality of (9.5) that 

3K ' J ;  (2K a)  cash koh 
2k:Hi(koa) Gosh2 Kh 

bo = - 

1 sinh(k0 + 2K)h sinh(k0 - 2K)h 
(ko + 2K)h + (ko - 2K)h 

437 

(9.7) 

and 
-I 3K3J;(2Ka) cos icnh 

b, = - 
Kn3Ki(Kna) cosh2 K h  

(9.8) 
2K sinh 2K h cos icnh + IC, cosh 2K h sin ic,h 

(4K2 + icn2)h 

The force due to (9.2) is obtained by integrating the corresponding pressure over 
the cylinder, as in (5.1)-(5.3), with the result 

The additional force component due to (9.3) is 

(9.10) 
L n=l  I 

These results are consistent with the corresponding expressions given by Kim & Yue 
(1989, Appendix B). 

The sum of (9.9) and (9.10) is the force due to the diffraction of the second-order 
incident-wave potential, 

1 

L n= 1 J I1 1\11 

For Kh+l ,  ko + 4K and the coefficients (9.7)-(9.8) are of order one. Thus (9.11) 
tends to zero exponentially, in proportion to the forcing function on the right-hand 
side of (9,l). Conversely, in the shallow-water limit v h  + 0, the second-order 
component of the incident-wave potential is singular, and (9.1 1) is unbounded, with 
the long-wavelength approximation 

F I  = 37ci(~/h)(vh)-''~ + 0 ((vh)1'2 log(vh)) . (9.12) 

The first two terms in (9.11) contribute equally to (9.12). 
Figure 7 shows computations based on (9.11). For v a 4 1  the singular component 

(9.12) is the dominant feature of these curves. For large values of va the magnitude 
of FI is negligible. 

10. The force due to the second-order body potential 
The remaining component of the second-order potential is associated with the 

contributions to the free-surface forcing function due to the first-order scattering 
potential, i.e. the terms do + T(Kr) in (8.8). Following the same procedure as in $4, 
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FIGURE 7. The force PI due to the second-order component of the incident-wave potential, evaluated 
from (9.1 l), for the three finite depths h / a  = 8,16,32 as shown in the legend of figure 6. The three 
curves which are bounded represent the real component and those which are unbounded as va -+ 0 
represent the imaginary component. (For h/a  = 32 the imaginary component is practically zero.) 

the solution can be expressed in the form 

Wi(ka, kr)kdk 
J;(ka)2 + Y/(ka)2 ’ 

&j(r ,  z )  = .Ico @)(k) cosh k(z + h) (10.1) 

Here the exponential function in (4.4) has been modified to satisfy the boundary 
condition on the bottom z = -h, and 

&l)(k) = 4(g/4KA2 lco [do + T ( K r ) ]  Wl(ka, kr) dr . (10.2) k sinh kh - 4v cosh kh 

Before considering the evaluation of (10.1) we proceed to integrate over the cylinder, 
to obtain the force FB as in (5.1)-(5.3). The result is 

m 

F B  = 4i 1 G(Kr) [do + T ( K r ) ]  dr ,  ( a 

Hf)(kr) -___ H~(kr) ]  k-I sinh kh  dk 
H,(’)’(ka) H;(ka) k sinhkh - 4v cosh kh ‘ 

where 

( G(Kr) = 2iK .Im [ 
0.3) 

0.4) 

Following the same technique as used by John (1950) to derive an eigenfunction 
expansion of the source potential, the range of integration in (10.4) can be extended 
to -a & i0 for the two terms in square brackets, respectively, and the resulting 
integrals can be evaluated by summing the residues on the imaginary axis. It follows 
that 

Here g denotes the contribution from the infinite series, which is real, with the same 
notation as in (5.7). The coefficients go and g, are defined by 

(10.6) 4V/G 
Kn2h  - 4~ + 16v2h * 

g, = 4zK 4v lko go = 4zK 
k;h + 4v - 16v2h ’ 
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FIGURE 8. The force FB due to the second-order component of the body potential, given by the 
sum of (10.7)-( 10.9). The fluid depths are as in figure 6. The four upper curves represent the real 
component and the lower curves represent the imaginary component. 

The force (10.3) may now be evaluated using (10.5). The following components are 
analogous to (5.1 1)-( 5.13) : 

x 

F(B1) = 4i(do/a) 1 G(Kr)dr 

(10.8) 

(10.9) 

Computations of the force due to (10.7)-( 10.9) are shown in figure 8 and compared 
with the infinite-depth limit evaluated from (5.1 1)-(5.13). The effect of finite depth 
is relatively small. The total force due to the combined effects of the second-order 
incident-wave and body potentials is shown in figure 9, and it is evident that in the 
long-wavelength regime the principal effect of finite depth is the singularity in the 
incident-wave potential represented by (9.12). 

One feature to note in figures 8 and 9 is the small but persistent effect of finite 
depth for increasing values of va. This is in contrast to the first-order diffraction force, 
where the finite-depth effect is exponentially small in the same regime. Physically this 
difference is due to the presence of evanescent modes, and to the slow attenuation 
with depth of the second-order potential (4.9). More specifically, if h/ab 1 and vab 1 
a short-wavelength approximation analogous to (7.6) can be derived from asymptotic 
analysis of (10.7) in the form 

FP - 4.185 [l + 0.2696e(loge - l)] i(Ka)”’ e21Kn+n1/4, (10.10) 

where e = (na/4h). Thus the second-order force is similar to that shown in figure 2, 
but with real and imaginary components reduced by the factor in square brackets in 
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FIGURE 9. The total force P ,  = FI + F B  due to the second-order components of the incident-wave 
and body potentials which are plotted separately in figures 7 and 8. The fluid depths are as in 
figure 6.  

(10.10). On the other hand, in the regime shown in figures 8 and 9, the finite-depth 
correction only affects the imaginary component of Fp since the parameter do is 
predominantly real. 

1 1. Discussion 
A refined analysis has been made of the second-harmonic second-order force 

acting on a cylinder in regular waves. This consists of a component Fq due to 
quadratic interactions of the first-order diffraction solution, and a component Fp due 
to the second-order velocity potential 4 2 .  The former is relatively straightforward to 
evaluate, and the procedure followed here is essentially the same as in other references. 

To analyse the more difficult component Fp, the relevant Fourier component of 
the potential 4 2  is derived by means of a Weber transform. The corresponding 
forcing function on the free surface is reduced, in the case of infinite depth, to the 
form (3.7) where the dominant component in the far field is inversely proportional 
to the radial coordinate and proportional to the back-scattered component of the 
first-order diffraction solution in the direction opposite to that of the incident waves. 
Computations of Fp are facilitated by treating the latter component separately, and 
also by applying contour integration to the remaining oscillatory quantities on the 
free surface. 

As a result of these procedures it is possible to compute the second-order force 
with substantial accuracy, over a broad range of frequencies. Algorithms have been 
used which are intended to be accurate to more than 8 decimal places. Sample results 
are shown in table 2 to permit benchmark comparisons of other codes. We omit 
more detailed tabular data, but note that specific comparisons have been made with 
the earlier computations of Eatock Taylor & Hung (1987) and Kim & Yue (1989). 
The former are presented in extensive tabular form with four significant decimals 
included, and we find complete agreement except for a few entries which differ by 
only one unit in the fourth significant decimal. The results of Kim & Yue (1989), 
which are a special case of their more general analysis for truncated cylinders, are 
only slightly less accurate. 
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h / a  va = 0.1 va = 1.0 va = 10 

F4 : 
1 (-0.036383, 0.462130) (-1.351504, 0.498970) (0.768230, 0.423660) 

10 (-0.001434, 0.340329) (-0.921028, 1.178992) (0.768230, 0.423660) 
co (-0.000558, 0.388529) (-0.921028, 1.178992) (0.768230, 0.423660) 

F P  : 
1 (7.480456, 25.07144) (1.585936, 0.416956) (-6.447914, -3.261691) 

10 (0.153891, 0.515222) (2.087783, -2.655653) (-11.50236, -5.767010) 
cc (0.080854, -0.000642) (2.099489, -2.920977) (-12.20275, -6.103843) 

F B  : 
1 (0.243202, -0.096270) (1.792721, -0.549315) (-6.447914, -3.261691) 

10 (0.103910, 0.007397) (2.087783, -2.655653) (-1 1.50236, -5.767010) 

F,  : 
1 (7.237255, 25.16771) (-0.206785, 0.966271) (0.000000, 0.000000) 

10 (0.04998 1, 0.507824) ( 0.000000, 0.000000) (0.000000, 0.000000) 

TABLE 2. Non-dimensional force components tabulated for three values of the parameters va and 
h/a.  In the infinite-depth limit = 0 and F B  = F P .  

A notable feature of the direct solution based on the Weber transforms is that the 
far-field asymptotic form of the second-order potential is readily derived, and shown 
to correspond with the description of Molin (1979) in terms of a ‘free’ component with 
outgoing waves analogous to the first-order radiated waves, and ‘locked’ waves which 
are in phase with the free-surface forcing function. In terms of the Weber integral 
transform for the potential over the wavenumber space k ,  these two components 
correspond respectively to the contributions from near the origin ( k  = 0), and from 
the residue at the pole where k is equal to the wavenumber 4K of a plane wave with 
the second-harmonic frequency 20. 

The direct solution carried out here has been simplified substantially by con- 
sidering only the first Fourier harmonic of the forcing function and the second- 
order potential, proportional to cos6. This is the only component required for 
the evaluation of the second-order force Fp. The more complete solution includ- 
ing all Fourier coefficients is required for other purposes, as emphasized by Chau 
& Eatock Taylor (1992) in their study of the second-order free-surface elevation. 
The complete solution also is required for the evaluation of the third-order force, 
as in the work of Malenica & Molin (1995). It is straightforward to extend the 
solution based on Weber transforms to include the complete Fourier series, as is 
done formally by Hunt & Baddour (1981). The principal restriction in the con- 
text of the present analysis is that the higher harmonics of the forcing function 
on the free surface cannot be reduced to simple forms analogous to (3.7), and 
it is necessary to proceed more directly from the conventional forms analogous 
to (3.6). 

Special attention has been given here to the asymptotic approximation of Fq and 
Fp for the long-wavelength regime ( K a ~ l ) .  For Fq a two-term expansion is derived 
which extends the corresponding result of Lighthill (1979), and gives results which are 
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accurate within a few percent when K a  < 0.6. For Fp the analysis is more complete 
than that given by Lighthill (1979), including both the imaginary and real components 
which are of comparable order. However the practical regime in which Fp can be 
approximated in this manner is relatively restricted, with significant departure from 
the exact results when Ka is between 0.1 and 0.2. A plausible explanation for this 
restriction, suggested by Malenica & Molin (1995), is that the relevant parameter in 
the expressions for Fp is 4Ka instead of Ka itself. 

The effect of a finite fluid depth is examined, and is particularly significant when 
the wavelength is long relative to the depth. The dominant effect is from the second- 
order component of the incident wave itself, and from the corresponding scattering 
effect by the cylinder. The force which is due to these two relatively simple effects is 
singular as K a  -+ 0. The remaining components of Fp are affected less significantly. 
For short wavelengths, on the other hand, the most significant modification is a small 
but persistent effect on Fp due to the slow attenuation of the second-order potential 
with depth (Newman 1990). 

These conclusions regarding the long-wavelength approximation of the second- 
order force may have relevance in the context of the controversy between Faltin- 
sen et al. (1995), and Malenica & Molin (1995). As noted in the Introduc- 
tion, Faltinsen et al. use an extension of the long-wavelength approach (Kael )  
to study third-order forces, assuming the wave amplitude A and cylinder radius 
u to be of the same order of magnitude and the depth h to be infinite. The 
analysis of Malenica & Molin is based on the third-order extension of the dif- 
fraction analysis used here, i.e. K a  = 0(1)  and AGa, while h is finite. Malenica 
& Molin present a numerical comparison between the two theories when a / h e l  
and Kh+l,  and conclude that the Faltinsen et al. regime is restricted severely. 
The present work supports the hypothesis of Malenica & Molin that the do- 
main of validity of the long-wavelength approximation for the second-order wave 
loads is only one-quarter of the corresponding domain for the first-order force, in 
proportion to the corresponding wavenumbers of the first- and second-harmonic 
waves. 

Also considered in the present work is the complementary asymptotic regime of 
short wavelengths. Both Fq and Fp are oscillatory in phase, in the same manner 
as the back-scattered amplitude of the first-order diffraction problem. However 
the modulus of Fp increases in proportion to the square-root of Ka,  whereas Fq 
is inversely proportional to the same factor. The relatively small magnitude of Fq 
can be attributed to the fact that the first-order diffraction potential is confined 
to an exponentially small depth near the free surface. Conversely, the pressure 
associated with the second-order potential is slowly attenuated with depth, and the 
resulting force Fp is dominant. Analogous two-dimensional results have been derived 
by McIver (1994), who finds for a floating body that Fp increases linearly with 
Ka. 
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